Mycobacterial PIMs Inhibit Host Inflammatory Responses through CD14-Dependent and CD14-Independent Mechanisms
نویسندگان
چکیده
Mycobacteria develop strategies to evade the host immune system. Among them, mycobacterial LAM or PIMs inhibit the expression of pro-inflammatory cytokines by activated macrophages. Here, using synthetic PIM analogues, we analyzed the mode of action of PIM anti-inflammatory effects. Synthetic PIM(1) isomer and PIM(2) mimetic potently inhibit TNF and IL-12 p40 expression induced by TLR2 or TLR4 pathways, but not by TLR9, in murine macrophages. We show inhibition of LPS binding to TLR4/MD2/CD14 expressing HEK cells by PIM(1) and PIM(2) analogues. More specifically, the binding of LPS to CD14 was inhibited by PIM(1) and PIM(2) analogues. CD14 was dispensable for PIM(1) and PIM(2) analogues functional inhibition of TLR2 agonists induced TNF, as shown in CD14-deficient macrophages. The use of rough-LPS, that stimulates TLR4 pathway independently of CD14, allowed to discriminate between CD14-dependent and CD14-independent anti-inflammatory effects of PIMs on LPS-induced macrophage responses. PIM(1) and PIM(2) analogues inhibited LPS-induced TNF release by a CD14-dependent pathway, while IL-12 p40 inhibition was CD14-independent, suggesting that PIMs have multifold inhibitory effects on the TLR4 signalling pathway.
منابع مشابه
Hydrocortisone Reduces Toll-Like Receptor 4 Expression on Peripheral CD14+ Monocytes in Patients Undergoing Percutanoues Coronary Intervention
Bacground: Evidence from several lines of investigations suggests that Toll-like receptor 4 (TLR4) is involved in atherosclerosis as a bridge between innate and acquired immunity. Percutaneous coronary intervention (PCI) can trigger inflammation through activation of human TLR4 (hTLR4) on monocytes. Hydrocortisone as an anti-inflammatory and immuno-suppressant agent has multiple mechanisms of a...
متن کاملCoexistence of CD14-dependent and independent pathways for stimulation of human monocytes by gram-positive bacteria.
The cell wall is a key inflammatory agent of gram-positive bacteria. Possible receptors mediating cell wall-induced inflammation include CD14 and platelet-activating factor (PAF) receptor. To delineate the conditions under which these various receptors might be used, human monocytic THP-1 cells and heparinized whole human blood were stimulated with lipopolysaccharide (LPS), intact Streptococcus...
متن کاملCD14 Signaling Restrains Chronic Inflammation through Induction of p38-MAPK/SOCS-Dependent Tolerance
Current thinking emphasizes the primacy of CD14 in facilitating recognition of microbes by certain TLRs to initiate pro-inflammatory signaling events and the importance of p38-MAPK in augmenting such responses. Herein, this paradigm is challenged by demonstrating that recognition of live Borrelia burgdorferi not only triggers an inflammatory response in the absence of CD14, but one that is, in ...
متن کاملLiposomal Lipopolysaccharide Initiates TRIF-Dependent Signaling Pathway Independent of CD14
Lipopolysaccharide (LPS) is recognized by CD14 with Toll-like receptor 4 (TLR4), and initiates 2 major pathways of TLR4 signaling, the MyD88-dependent and TRIF-dependent signaling pathways. The MyD88-dependent pathway induces inflammatory responses such as the production of TNF-α, IL-6, and IL-12 via the activation of NFκB and MAPK. The TRIF-dependent pathway induces the production of type-I IF...
متن کاملExpression of macrophage CD14 receptor in the course of experimental inflammatory responses induced by lipopolysaccharide and muramyl dipeptide
The aim of this study was to determine whether expression of CD14 on macrophages is regulated differently during initiation and resolution of the inflammatory response caused by CD14-dependent (lipopolysaccharide) and CD14-independent (muramyldipeptide) bacterial signals. In cell suspensions from the site of inflammation we observed two types of macrophages: non-vacuolized (NMAC) and vacuolized...
متن کامل